A construction of compact pseudo-Kähler solvmanifolds with no Kähler structures
نویسندگان
چکیده
منابع مشابه
Kähler (& Hyper-kähler) Manifolds
These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short introduction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces. However, they also include other interesting results not related to K3 sur...
متن کاملThe cohomology of a variation of polarized Hodge structures over a quasi - compact Kähler manifold
Let (M,ω0) be a compact Kähler manifold of dimension n and D a divisor of M with at most normal crossing singularities . Let D = ∪i=1Di , where the Di are smooth divisors of M . Denote M \ D by M , called a quasi-compact Kähler manifold. j : M → M is the inclusion mapping. According to [3], one can construct a complete Kähler metric ω on M which is a Poincaré-like metric near the divisor and of...
متن کامل4 - Dimensional ( Para ) - Kähler – Weyl Structures
We give an elementary proof of the fact that any 4-dimensional para-Hermitian manifold admits a unique para-Kähler–Weyl structure. We then use analytic continuation to pass from the para-complex to the complex setting and thereby show that any 4-dimensional pseudo-Hermitian manifold also admits a unique Kähler–Weyl structure.
متن کاملRealization of Compact Lie Algebras in Kähler Manifolds
The Berezin quantization on a simply connected homogeneous Kähler manifold, which is considered as a phase space for a dynam-ical system, enables a description of the quantal system in a (finite-dimensional) Hilbert space of holomorphic functions corresponding to generalized coherent states. The Lie algebra associated with the manifold symmetry group is given in terms of first-order differentia...
متن کاملRicci flow on compact Kähler manifolds of positive bisectional
where ω̃ = ( √ −1/2)g̃ij̄dz ∧ dz and Σ̃ = ( √ −1/2)R̃ij̄dz ∧ dz are the Kähler form, the Ricci form of the metric g̃ respectively, while c1(M) denotes the first Chern class. Under the normalized initial condition (2), the first author [3] (see also Proposition 1.1 in [4]) showed that the solution g(x, t) = ∑ gij̄(x, t)dz dz to the normalized flow (1) exists for all time. Furthermore by the work of Mok ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 2005
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496164895